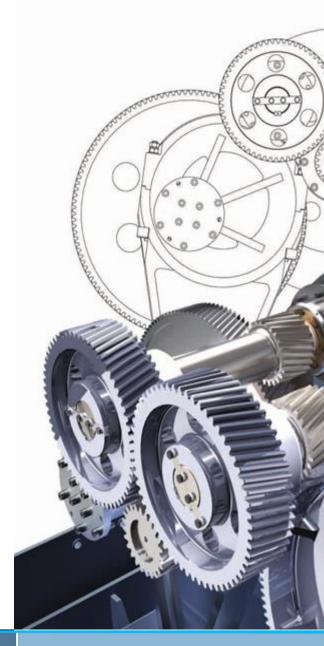


Midterm 1 Presentation Conceptual Design

October 22nd, 2015

Sponsor: Dr. Chiang Shih

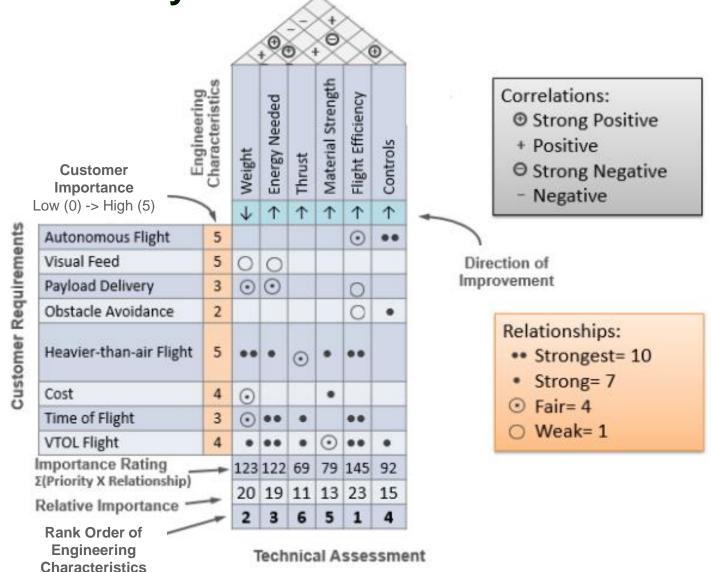

Advisor: Dr. Farrukh Alvi

Presenting Members: Daylan Fitzpatrick Jake Denman Kade Aley

Team Members: Patrick McGlynn Kikelomo Ijagbemi Christian Mard

Agenda

- Background
- Constraints & Requirements
- Project Scope
- Objectives
- Design Concepts
- Concept Evaluation
- Potential Challenges
- Relevant Data
- Future Plans
- Gantt Chart


Project Overview Background

- The Seafarer Chapter of Association for Unmanned Vehicle Systems International (AUVSI)
- Student Unmanned Aerial System (SUAS)
 competition
- Challenges students to design a system capable of completing a specific and independent aerial operation.
- Stimulate and foster interest in innovation and careers in the aerospace industry

Project Overview Contraints & Requirements

- Minimum 10 Hz communication
- Less than 55 pounds
- Max airspeed of 115 mph
- Flight altitude of 100ft 750ft
- Sense, detect, and avoid capability

House of Quality

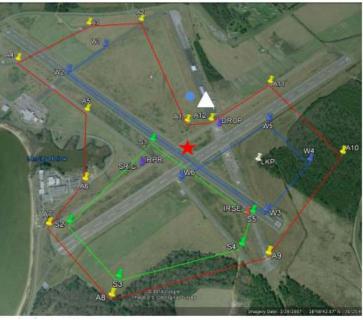
Low (6) -> High (1)

Project Overview Needs Assessment

Needs Statement

 "There needs to be an autonomous aerial vehicle capable of navigating waypoints, searching autonomously, and identifying targets."

Goal Statement


 "The goal is to design an autonomous aerial vehicle able to compete in the SUAS competition and capable of vertical take-off and landing."

Project Overview Project Scope

Design an aircraft that fulfill the customer requirements, as well as competition specifications.

- Capable of Vertical Take-Off & Landing (VTOL)
- Autonomously navigating waypoints and search large areas for targets and actionable intel

Project Overview Objectives

- Manifest and complete a VTOL vehicle design
- Purchase, gather, or manufacture components
- Integrate and test mechatronics via firmware development
- Assemble prototype and conduct benchmarking
- Test both manual control and autonomy
- Develop and test sensor package and telemetry
- Quantify and improve vehicle performance
- Compete at competition (June 15-19, 2016)

- Quadcopter
- Firefly Y6
- Previous Year Design
- Skywalker Tri-copter

- Quadcopter
- Firefly Y6
- Previous Year Design
- Skywalker Tri-copter


Figure 1 – Quadcopter^[3]

- Quadcopter
- Firefly Y6
- Previous Year Design
- Skywalker Tri-copter

Figure 2 - Firefly Y6^[1]

- Quadcopter
- Firefly Y6
- Previous Year Design
- Skywalker Tri-copter

Figure 3 - 2014 Team 8 Vehicle

- Quadcopter
- Firefly Y6
- Previous Year Design
- Skywalker Tri-copter

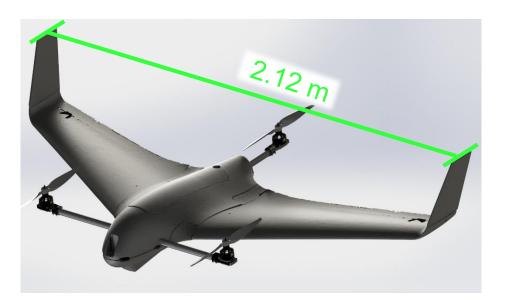


Figure 4 - Skywalker Tri-Copter

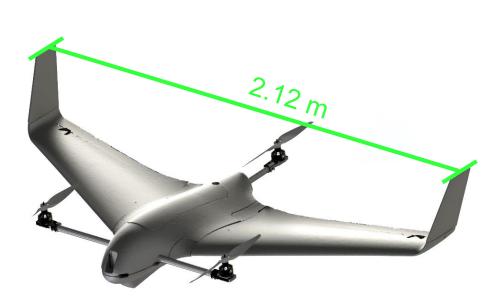
Quadcopter

- Inefficient with horizontal flight
- 4 motors, more power consumption

Firefly Y6

- Image: with optional power powe
- Payload weight is low
- Expensive
- 6 motors, even more power consumption

Previous Year Design


- Heavy (8,238g)
- Firmware not supported
- Difficult to repair / modify
- Unstable horizontal flight

• Relatively high power consumption

Skywalker Tri-copter

- Lighter (5,500g)
- Proven Concept

- Durable
- Easily replaceable parts
- Large internal capacity
- Lower power consumption

Potential Challenges

- Firmware complications
- Limited references for this type of vehicle
- Autonomous flight
- Imaging software / hardware
- Competition fees

Relevant Data Motor Spec

Component	New Design
All up weight	5500g
Number of motors	3
Thrust needed per motor	~1850g or ~65oz
Thrust $(n = 2)$	~3700g or ~ 131oz
Size of props	16" x 5.5"

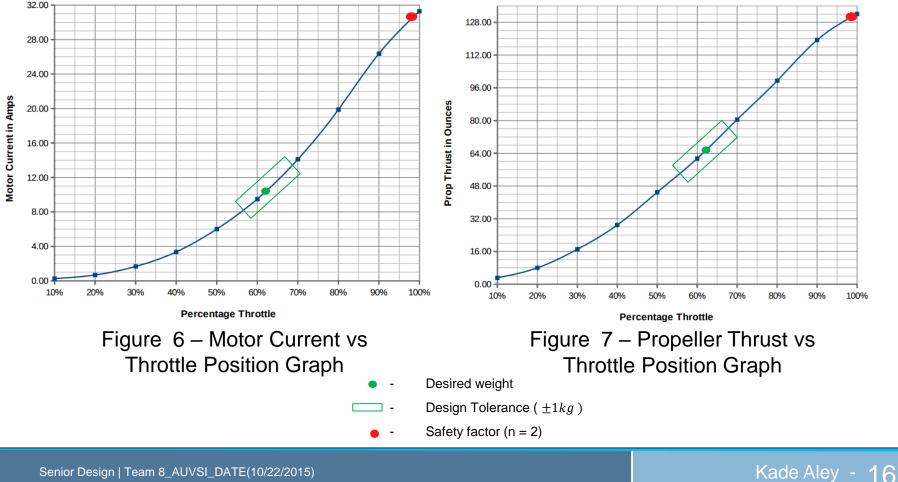


Figure 5 – 4510/450kv Cobra Motor^[4]

Relevant Data Motor Spec

Motor Current vs Throttle Position

Propeller Thrust vs Throttle Position

Senior Design | Team 8_AUVSI_DATE(10/22/2015)

Relevant Data Prop Spec

Prop	Prop	Li-Po	Input	Motor	Input	Prop	Pitch Speed	Thrust	Thrust	Thrust Eff.
Manf.	Size	Cells	Voltage	Amps	Watts	RPM	in MPH	Grams	Ounces	Grams/W
APC	14x5.5-MR	6	22.2	21.50	477.3	7,525	39.2	2788	98.34	5.84
APC	16x5.5-MR	6	22.2	31.29	694.6	6,915	36.0	3749	132.24	5.40
APC	18x5.5-MR	6	22.2	38.76	860.5	6,414	33.4	4468	157.60	5.19
GemFan	15x4.5-MR	6	22.2	19.73	438.0	7,638	32.5	2661	93.86	6.08
GemFan	16x4.5-MR	6	22.2	25.37	563.2	7,276	31.0	3220	113.58	5.72
RC-Timer	12x5.5-CF	6	22.2	16.44	365.0	7,874	41.0	1911	67.41	5.24
RC-Timer	13x5.5-CF	6	22.2	21.90	486.2	7,495	39.0	2417	85.26	4.97
RC-Timer	14x5.5-CF	6	22.2	29.31	650.7	7,021	36.6	2855	100.71	4.39
RC-Timer	15x5.5-CF	6	22.2	39.95	886.9	6,352	33.1	3375	119.05	3.81

Figure 9 – 4510 Cobra motor propeller comparison^[6]

Propeller Chart Color Code Explanation

The prop is to small to get good performance from the motor. (Less than 50% power)

The prop is sized right to get good power from the motor. (50 to 80% power)

The prop can be used, but full throttle should be kept to short bursts. (80 to 100% power)

Relevant Data Flight Time

• Better flight time (65% increase) from previous year's design

Component	Old Design	New Design
Amp Draw (100%)	38.76	31.29
Number of Motors	4	3
Total Amp Draw	155.04	93.87
Flight Time (mins) [A.3]	3.87	6.39

** Based on 100% thrust, 22.2 volt system, and 10,000 mAh battery

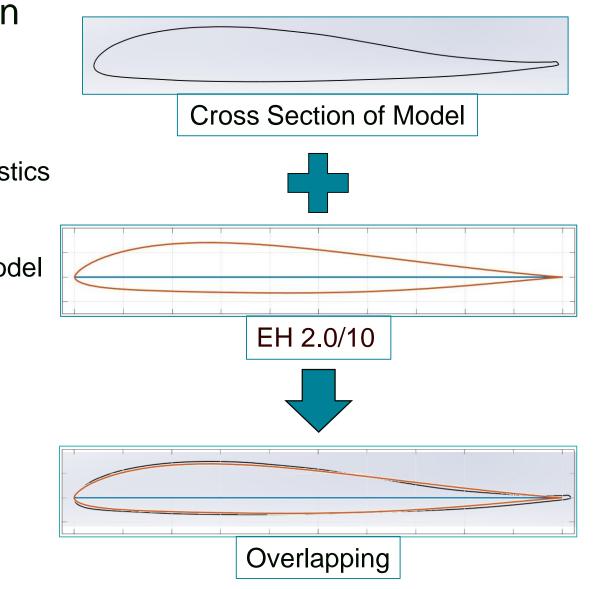
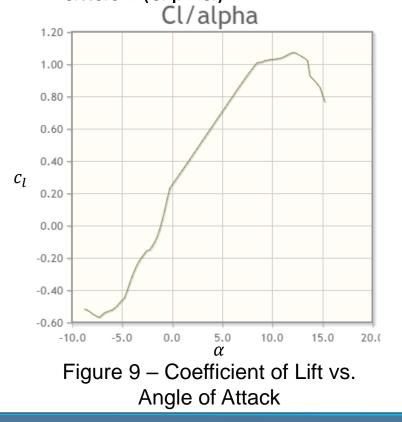
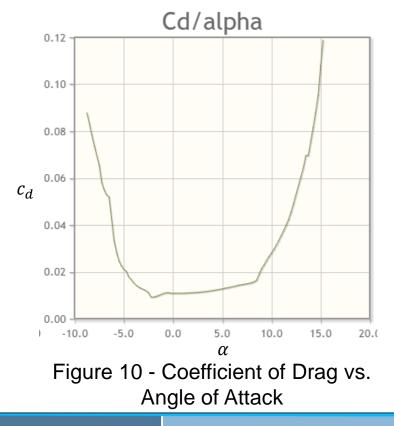


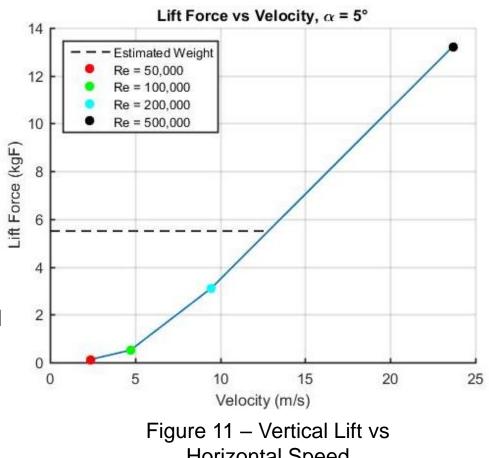
Figure 8 – Electronic Speed Controller^[5]

Relevant Data Airfoil Determination


- Airfoil needed for aerodynamic characteristics
- 2-D Sketch from 3-D model

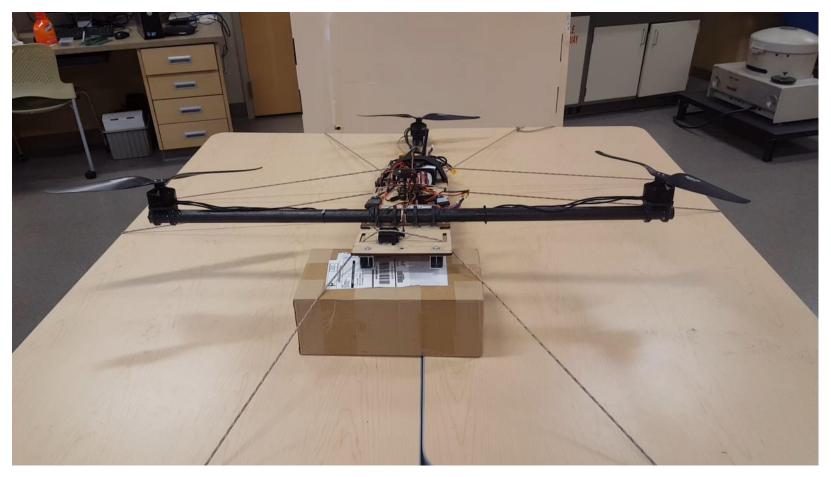

Tailless R/C Aircraft

Relevant Data Lift and Drag Coefficients


- Airfoil Tools Analysis of EH 2.0/10
 - Based on Reynold's Number (200,000 Below)
 - Outputs lift and drag coefficients based on angle of attack (alpha)

Relevant Data Lift Force

- Relationship formed from varying Reynold's Numbers (Re)
- Estimated Weight: 5500g
- Predicted Velocity: ~12.5 m/s^[A.1-2]


Relevant Data Current Firmware Code

- User-Friendly
- Open-source collaboration
- VTOL Firmware
- Diverse hardware compatibility

Figure 12 – Pixhawk Microcontroller^[2]

Future Plans Current Work

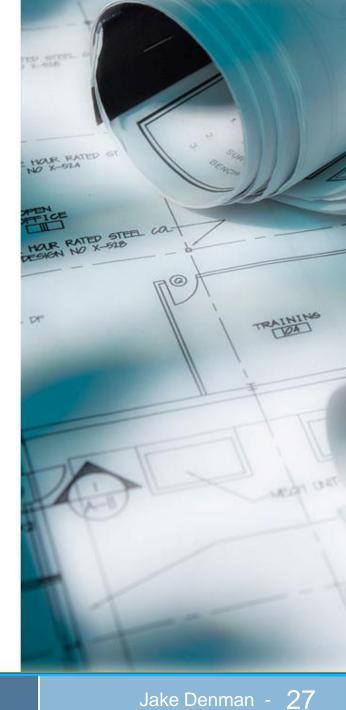
Future Plans


1st Semester - Vehicle

- Fully Functioning Aerial Vehicle
- Autonomous flight

2nd Semester - Competition Objectives

- Functioning sensor package
- Waypoint navigation
- Payload delivery


Gantt Chart

Summary

- Tri-copter
- Flying Wing
- Tilt-Rotor
- Pixhawk Microcontroller

References

[1] - "FireFLY6 - Welcome to the Revolution." BirdsEyeView Aerobotics. N.p., 2015. Web. 20 Oct. 2015.

[2] - Hazelhurst, Jethro. "Pixhawk Graphic for Documentation." DIY Drones. N.p., 18 Dec. 2013. Web. 19 Oct. 2015.

[3] - Owenson, Gareth. "How to Build Your Own Quadcopter Autopilot / Flight Controller." Owenson.me. N.p., n.d. Web. 19 Oct. 2015. http://owenson.me/build-your-own-quadcopter-autopilot/>.

[4] - "Cobra CM-4510/28 Multirotor Motor, KV=420." Cobra Motors USA. N.p., n.d. Web. 19 Oct. 2015. < http://www.cobramotorsusa.com/multirotor-4510-28.html>.

[5] - "Cobra 40A Opto Multirotor Esc" Cobra Motors USA. N.p., n.d. Web. 20 Oct. 2015 <http://www.cobramotorsusa.com/multirotoresc-40amp.html>.

[6] - "Cobra CM-4510/28 420Kv Motor Propeller Data" Innov8tive Designs. N.p., n.d. Web. 20 Oct. 2015 < http://innov8tivedesigns.com/images/specs/Cobra_CM-4510-28-420Kv_Specs.htm>.

Appendix

Reynold's Number:

$$Re = \frac{\vec{V} * L}{v}$$
[1]

Lift Equation:

$$F_L = C_L * \frac{\rho * \vec{V}^2}{2} * S$$

Flight Time:

$$Time = \frac{Battery \ Capacity}{Total \ Amperage}$$

[2]

[3]

Questions

Senior Design | Team 8_AUVSI_DATE(10/22/2015)